Modelling of time-dependent dispersion for releases including potential rainout

Henk Witlox and Mike Harper – DNV Software

UKELG 50th Anniversary Discussion Meeting
9 – 11 July 2013, Cardiff University

Modelling of time-varying dispersion for releases including rainout

- 1. Introduction
- 2. Current Phast dispersion model UDM (versions 6.7 and 7.01)
- 3. Improved UDM model including along-wind-diffusion effects
- 4. Testing and verification of new UDM model against HGSYSTEM
- 5. Main conclusions and future work
1. Introduction

Discharge, droplet dispersion, rainout and re-evaporation

(flashing) two-phase discharge from pipe or vessel
vapour-plume centre-line
SMD droplet trajectory
point of rainout; spreading evaporating liquid pool
Background – Modelling of time-varying dispersion

- Effects of along-wind-diffusion (AWD): more dilute cloud, increased downwind length
- Early nineties –time-varying heavy-gas dispersion model HEGADAS-T (HGSYSTEM)
 - Dispersion from ground-level area source
 - Release of “Observers” from area source; include AWD effects via integration
 - No rainout modelling, no time-varying dispersion directly from time-varying discharge
- Modelling of time-varying dispersion by Phast model UDM
 - Phast 6.7/7.01: no AWD effects for time-varying releases or time-varying pools
 - (2001) UDM (Phast) validation against Kit Fox experiments (Exxon Mobil)
 - finite-duration release from ground-level source
 - UDM validation based on finite-duration correction (FDC) method
 - (2008-2011) UDM modelling for time-varying releases with or without rainout
 - Sponsors: DNV, RIVM, TOTAL
 - UDM simulation of time-dependent dispersion including along-wind diffusion (observer concept)
 - Verification of UDM against HGSYSTEM (FDC and time-varying)

2. Current Phast dispersion model UDM (versions 6.7 and 7.01)
Finite-duration release: quasi-instantaneous model (Phast default)

- Continuous/instantaneous transition if width/length ratio large
- Disadvantages:
 - Abrupt transition
 - Less accurate along-wind diffusion

Finite-duration release: finite-duration correction (FDC) method
(Phast alternative option; improved accuracy for validation against Kit Fox experiments)

- Carry out steady-state calculations for single segment
- Apply along-wind-diffusion by finite-duration correction (accounts for wind shear and turbulent spread)
- Disadvantage: predicts maximum concentration only (no cloud width/length, dose)
Time-varying release: UDM multi-segment method

- Divide released mass into equal-mass segments
- Carry out steady-state calculations for each segment
- At each output time set segment concentrations [before along-wind-diffusion]

3. Improved UDM model including along-wind-diffusion effects
New observer method for time-varying release

- Release observers at regular time intervals
- Carry out steady-state calculations for each observer
- At each output time set observer concentrations [before along-wind-diffusion]
- Apply along-wind diffusion and downwind spreading

UDM along-wind diffusion formulation
(elevated finite-duration or time-varying release with no rainout, or dispersion from pool)

- "Observers" are released from source moving with UDM speed
- Algorithm to set concentration as function of position x and time t
 - Carry out Phast time-varying source-term calculations (flow rate or pool evaporation rate)
 - Divide in equal-mass segments
 - Calculations for each observer
 - Release observer at start of segment
 - Set time-varying observer data (downwind position ξ, concentration $C_0(\xi)$, ...) from steady-state UDM run
 - At given time t, apply along-wind-diffusion by Gaussian integration over observer concentrations:
 \[
 c_v(x,t) = \int_{-\infty}^{\infty} \frac{C_0(\xi)}{(2\pi)^{1/2} \sigma_x(\xi)} \exp\left[-\frac{(x-\xi)^2}{2 \sigma_x^2(\xi)}\right] d\xi
 \]
- Assumptions
 - Ignore along-wind gravity spreading (no gravity shape correction)
 - No automation of observers and output times
 - Use along-wind-diffusion coefficient σ_x consistent with FDC method
UDM link pool and dispersion (before, during and after rainout)

UDM along-wind diffusion formulation (non-instantaneous release with rainout)

- "Release observers" are released from source until upwind pool upwind of observers
 - Solve original UDM equations before rainout and upwind of pool
 - Adjust observer variables at observer rainout, and solve additional pool equations after rainout
 - Solve extended UDM equations to account pool-vapour pickup for observer above pool
- "Pool observers" released from upwind edge of pool afterwards
- Set AWD concentration as function of position x and time t:

$$
c_a(x,t) = \int_0^\infty \frac{C_o(\xi)}{(2\pi)^{1/2}\sigma_x(\xi)} \exp\left\{-\frac{(x-\xi)^2}{2\sigma_x^2(\xi)}\right\} d\xi
$$
4. Testing and verification of new UDM model against HGSYSTEM

- steady-state/FDC release - CO2 area source (Kit Fox)
- time-varying release without rainout (Kashagan)
- time-varying release from butane pool

Verification against HGSYSTEM (dispersion from butane pool without or with bund)

- Problem
 - Immediate spill of 10000 kg butane onto ground
 - With bund of 10m radius
 - Without bund
 - Pool on water and dispersion on land: 1 minute maximum pool duration
 - Ambient data: 300K, weather D5, humidity 70%

- HGSYSTEM 3.0 calculations (DOS)
 - HEGADAS-S: ground-level steady-state heavy-gas dispersion from area source
 - POSTHS: post-processing (for FDC calculations)
 - HEGADAS-T: ground-level time-dependent heavy-gas dispersion from area source

- Selection of HEGADAS input
 - No gravity-shape correction (non-default)
 - Along-wind-diffusion coefficient based on Ermak’s formula (non-default)
 - HEGADAS-S rectangular source – chosen as square with same area as UDM pool

- Results
 - HEGADAS results very consistent with UDM results
UDM butane pool results (input to HEGADAS-T)

Butane pool with bund –maximum concentration (steady-state, in near-field)
Butane pool with bund – maximum concentration (steady-state, FDC, time-varying)

- Correct upper FDC envelope for UDM AWD and HEGADAS-T predictions
- Close agreement between UDM and HEGADAS FDC results
- UDM cloud moves faster in the near-field because of lower near-field concentrations

Butane pool without bund - maximum concentrations (time-varying)

HEGADAS cloud moves slower in the near-field because of higher near-field concentrations
UDM AWD modelling for elevated chlorine release with rainout

- **Input data**
 - **Release data:**
 - Horizontal 100kg/s chlorine release with 50s duration
 - Post-expansion data: 100% saturated liquid at its boiling point of 214K, 10m/s, drop size 100µm
 - **Pool and dispersion on land:** 500 seconds maximum pool duration (no bund)
 - **Ambient data:** 298K, weather D5, humidity 70%
 - **Runs**
 - Old Phast 6.7 without AWD effects: multiple pool segments
 - New UDM: 2 observers from release point at 0s, 50s and 30 subsequent observers from pool

- **Results**
 - 90% rainout at 5m downwind distance
 - Pool spreading/evaporation
 - Centre-line concentration versus downwind distance (at different output times 300s, 600s, 100s, 1500s)
 - Old Phast 6.7 results (4 pool segments; no effects of along-wind diffusion)
 - New UDM (before and after effects of along-wind-diffusion)

Time-varying pool data: pool radius and evaporation rate
5. Main conclusions and future work
Main conclusions

- Algorithm to define observer release data from time-varying discharge or pool models (based on equal-mass segments)
- Time-dependent UDM model including along-wind diffusion (AWD)
 - Scenarios
 - Dispersion from time-varying pool
 - Time-varying elevated release without rainout
 - Time-varying or finite-duration elevated release with rainout
 - Algorithm
 - Sets pre-AWD observer concentrations from steady-state runs (no discontinuous segments)
 - Solves dispersion, droplet and pool equations simultaneously
 - Avoids previous pool segmentation
 - Sets AWD concentrations by integration over downwind distance
 - No longer segments and unrealistically high far-field concentrations
 - Verification against HGSYSTEM
 - Steady or time-varying area source, elevated vapour release
 - Consistency with FDC
 - Additional testing for elevated releases with rainout

Future work

- Gravity shape correction to include along-wind gravity spreading
- Implementation into Phast (Safeti)
- Refine formula for along-wind-diffusion coefficient
- Validation against experimental data