A new single-step reaction mechanism for propane explosions covering the entire spectrum of flame acceleration, transition to detonation and detonation

Jennifer Wen1 & Changjian Wang2,3

1Warwick Fire, School of Engineering, University of Warwick
2Centre for Fire and Explosion Studies, Kingston University London
3State Key Laboratory of Fire Safety Science, University of Science and Technology, China
Outline

• The new single-step reaction mechanism
• Governing equations & CFD code
• Validation
 – Comparison with detailed chemistry model
 – Detonation cell size
 – Flame acceleration in a vented duct
• Exploratory study - shock and detonation propagation through a U-bend
• Concluding remarks
Limitations of existing reaction mechanisms

(1) Berkeley GRI-mechanism (53 species, 325 reactions)
 computationally intensive

(2) Westbrook’s mechanism (1981)
 \[- \frac{d[C_3H_8]}{dt} = 8.6 \times 10^{11} \exp\left(-\frac{15000}{T}\right) [C_3H_8]^{0.1} [O_2]^{1.65}\]
 under-predicting half reaction length

(3) Frolov’s model (2007)
 \[- \frac{d[C_3H_8]}{dt} = 7 \times 10^{14} \times p^n \times \exp\left(-\frac{454600}{RT}\right) [C_3H_8] [O_2] \]
 under-predicting half reaction length for rich gas
Our group’s previous approach in detonation modelling

Reaction progress equation:

\[
\frac{\partial \rho \alpha}{\partial t} = -\nabla (\rho \alpha V) + \rho \omega
\]

\[
\omega = A(1 - \alpha) EXP\left(-\frac{E_a}{RT}\right)
\]
The predicted overpressure and velocity vs time

The new single-step reaction mechanism

A singe-step overall reaction for propane-air combustion

\[C_3H_8 + 5O_2 + 18.8N_2 \rightarrow 3CO_2 + 4H_2O + 18.8N_2 \]

The reaction rate in Arrhenius form

\[\omega = k[C_3H_8]^a[O_2]^b \]

where \(k = A\exp\left(-\frac{E_a}{RT}\right) \), \([C_3H_8]\), \([O_2]\), . a and b are the rate constant, propane and oxygen molar concentrations, propane and oxygen rate exponents respectively. A and \(E_a \) denote pre-exponential factor and activation energy, respectively.
The new single-step reaction mechanism

$$\omega = k [C_3H_8]^a [O_2]^b$$

Reaction order = $a + b$

$$n = -\frac{\rho}{\tau_i} \left(\frac{\partial \tau_i}{\partial \rho} \right)_{T_0} + 1$$

The new single-step reaction mechanism

\[- \frac{d[C_3H_8]}{dt} = 3.11 \times 10^{14} \exp\left(\frac{-55910}{RT}\right)[C_3H_8]^{0.1}[O_2]^{1.65}\]
Governing equations

\[\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_j}{\partial x_j} = 0 \]

\[\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right] \]

\[\frac{\partial \rho h_s}{\partial t} + \frac{\partial \rho u_j h_s}{\partial x_j} = \frac{dp}{dt} + \frac{\partial}{\partial x_j} \left(\rho D \frac{\partial h_s}{\partial x_j} \right) + Q \]

\[\frac{\partial \rho Y_k}{\partial t} + \frac{\partial \rho u_j Y_k}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\rho D \frac{\partial Y_k}{\partial x_j} \right) + \omega_k \]
Numerical setup

Time: second-order Crank-Nicholson scheme

The convective terms: 2nd MUSCL scheme (TVD)

The viscous terms: second-order central differencing discretization
Validation – detonation cell size

Experimental cell width: 55mm
Predicted value: 60mm

Westbrook’s model (cell size: ~20mm)
Validation - Flame acceleration in a vented duct

Exploratory study - shock and detonation propagation through a U-bend

Width=10mm
$P_0=(60-200)\text{atm}$
$T_0=2500\text{K}$

stoichiometric propane-air mixture
$P_0=1\text{atm}$
$T_0=300\text{K}$
Numerical setup

- The geometry and set up mimics that of Frolov et al.’s experiments.
- The grid size is 0.25mm (8 grids in half reaction length) total grid number is 2.15M (10562×204)
- Six cases as listed below

<table>
<thead>
<tr>
<th>Cases</th>
<th>Initial Pressure</th>
<th>Initial Tempreature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150 atm</td>
<td>2500K</td>
</tr>
<tr>
<td>2</td>
<td>100 atm</td>
<td>2500K</td>
</tr>
<tr>
<td>3</td>
<td>85 atm</td>
<td>2500K</td>
</tr>
<tr>
<td>4</td>
<td>75 atm</td>
<td>2500K</td>
</tr>
<tr>
<td>5</td>
<td>65 atm</td>
<td>2500K</td>
</tr>
<tr>
<td>6</td>
<td>60 atm</td>
<td>2500K</td>
</tr>
</tbody>
</table>
Results

The effects of the U-Bend:
(1) First decelerating and then accelerating (Cases 1 and 2)
(2) First accelerating and then decelerating (Case 3)
(3) Continuously decelerating (Case 4)
(4) Decelerating shock wave followed separately by a flame (Cases 5 and 6)
Case-1: First decelerating and then accelerating
Case 1: First decelerating and then accelerating

[Diagram showing shock wave speed and pressure variations over distance and time with labeled points PT1 to PT7 and a U-bend structure]
Case 2: First decelerating and then accelerating
Case 3: First accelerating and then decelerating
Case 4: Decelerating
Case 5: Decelerating shock wave followed separately by a flame
Case 6: Decelerating shock wave followed separately by a flame
Conclusions

• A new single-step reaction mechanism has been developed for propane-air mixture, covering the entire spectrum covering flame acceleration, transition to detonation and detonation.

• For the vented duct case, the predicted flame front is in good agreement with the measurements.

• For the six cases in the U-tube, the effects of the bend depend on the initial pressure. For the pressure range considered from 60 to 140 bar, four modes are predicted:
 - First decelerating and then accelerating
 - First accelerating and then decelerating
 - Continuously decelerating
 - Decelerating shock wave followed separately by a flame
Acknowledgement

We are thankful to the financial support of the European Commission’s Marie Curie Programme IIF-FP7 Project (Grant No. 909658).

Many thanks to Geoff Chamberlain for pointing us to the vented duct flame data.